polinomios
∑
=
= + + + + + = n i 0 i i n n
3
3
2 P(x) a0 a1x a2x a x ... a x a x em que cada ai é um número complexo (ou real) tal que n é um número natural e an ≠ 0. Os números ai são denominados coeficientes do polinômio P(x). O termo a0 é chamado coeficiente constante ou termo independente. Exemplos:
1) P(x) = x3
+2 x2 - 3x + 10 é um polinômio de grau 3. Note que segundo a notação acima temos a0=10, a1 = -3, a2 = 2 e a3 = 1.
2) Q(x) = x2 + 1 é um polinômio de grau 2 tal que a0 = 1, a1 = 0 e a2 = 1.
3) R(x) = 7 é um polinômio de grau zero tal que a0=7. Observe que P(x) = x2 + x + x ½ +2 não é um polinômio devido ao expoente ½. Similarmente,
Q(X) = x3 +2x +x-2 +3 não é polinômio devido ao expoente –2.
Definição: Dado o número complexo (ou real) a, o número P(a) é chamado valor numérico do polinômio P(x) em x = a. Além disso, se P(a) = 0 então dizemos que a é uma raiz do polinômio P(x).
Exemplos:
1) Se P(x) = x2 -3x + 2 então P(3) = 32 - 3 3 + 2 = 9 – 9 + 2 = 2 é o valor numérico de P(x) em x=3. Além disso, x = 1 e x = 2 são raízes do polinômio P(x) já que P(1) = 12 – 3 ⋅ 1 + 2 = 1 – 3 +2 = 0 e P(2) = 22 – 3 ⋅ 2 + 2 = 4 – 6 + 2 = 0. 2) As raízes do polinômio Q(x) = x2 +1 são os números complexos i e –i, já que
Q(i) = i2 + 1 = -1 + 1 =0 e Q(-i) = (-i)2 + 1 = -1 + 1 =0.
Polinômios Adição
Exemplo 1
Adicionar x2 – 3x – 1 com –3x2 + 8x – 6.
(x2 – 3x – 1) + (–3x2 + 8x – 6) → eliminar o segundo parênteses através do jogo de sinal.
+(–3x2) = –3x2
+(+8x) = +8x
+(–6) = –6
x2 – 3x – 1 –3x2 + 8x – 6 → reduzir os termos semelhantes.
x2 – 3x2 – 3x + 8x – 1 – 6
–2x2 + 5x – 7
Portanto: (x2 – 3x – 1) + (–3x2 + 8x – 6) = –2x2 + 5x – 7
Exemplo 2
Adicionando 4x2 – 10x – 5 e 6x + 12, teremos:
(4x2 – 10x – 5) + (6x + 12) → eliminar os parênteses utilizando o jogo de