Números Reais Racionais e Naturais
O conjunto dos números reais surge para designar a união do conjunto dos números racionais e o conjunto dos números irracionais. É importante lembrar que o conjunto dos números racionais é formado pelos seguintes conjuntos: Números Naturais e Números Inteiros. Vamos exemplificar os conjuntos que unidos formam os números reais. Veja:
Números Naturais (N): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ....
Números Inteiros (Z): ..., –8, –7, –6, –5, –4, –3, – 2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, .....
Números Racionais (Q): 1/2, 3/4, 0,25, –5/4,
Números Irracionais (I): √2, √3, –√5, 1,32365498...., 3,141592....
Podemos concluir que o conjunto dos números reais é a união dos seguintes conjuntos:
N U Z U Q U I = R ou Q U I = R
Os números reais podem ser representados por qualquer número pertencente aos conjuntos da união acima. Essas designações de conjuntos numéricos existem no intuito de criar condições de resolução de equações e funções. As soluções devem ser dadas obedecendo padrões matemáticos e de acordo com a condição de existência da incógnita na expressão.
Números Racionais
Interseção dos conjuntos: Naturais, Inteiros e Racionais
Os números decimais são aqueles números que podem ser escritos na forma de fração.
Podemos escrevê-los de algumas formas diferentes:
Por exemplo:
♦ Em forma de fração ordinária: ; ; e todos os seus opostos.
Esses números têm a forma com a , b Z e b ≠ 0.
♦ Números decimais com finitas ordens decimais ou extensão finita:
Esses números têm a forma com a , b Z e b ≠ 0.
♦ Número decimal com infinitas ordens decimais ou de extensão infinita periódica. São dízimas periódicas simples ou compostas:
As dízimas periódicas de expansão infinita podem ser escritas na forma : com a, b Z e b ≠ 0.
- O conjunto dos números racionais é representado pela letra Q maiúscula.
Q = {x = , com a Z e b Z*}
- Outros subconjuntos de Q:
Além de N e