Numeros Inteiros
Z={..., -3, -2, -1, 0, 1, 2, 3,...}
É importante ressaltar que os números inteiros são “fechados”, para as operações de adição, multiplicação e subtração, ou seja, a soma, produto e diferença de dois números inteiros ainda é um número inteiro.
Há subconjuntos de Z:
* Z* = Z-{0}
* Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...}
* Z- = conjunto dos inteiros não positivos = {... -5, -4, -3, -2, -1, 0}
A necessidade dos números negativos
O número é um conceito fundamental em Matemática que tomou forma num longo desenvolvimento histórico. A origem e formulação deste conceito ocorreu simultaneamente com o despontar, entenda-se nascimento, e desenvolvimento da Matemática. As atividades práticas do homem, por um lado, e as exigências internas da Matemática por outro determinaram o desenvolvimento do conceito de número. A necessidade de contar objetos levou ao aparecimento do conceito de número Natural.
Todas as nações que desenvolveram formas de escrita introduziram o conceito de número Natural e desenvolveram um sistema de contagem. O desenvolvimento subsequente do conceito de número prosseguiu principalmente devido ao próprio desenvolvimento da Matemática. Os números negativos aparecem pela primeira vez na China antiga. Os chineses estavam acostumados a calcular com duas coleções de barras - vermelha para os números positivos e preta para os números negativos.No entanto, não aceitavam a ideia de um número negativo poder ser solução de uma equação. Os Matemáticos indianos descobriram os números negativos quando tentavam formular um algoritmo para a resolução de equações quadráticas. São exemplo disso as contribuições de Brahomagupta, pois a aritmética sistematizada dos números negativos encontra-se pela primeira vez na sua obra. As regras sobre grandezas eram já conhecidas através dos teoremas gregos sobre