Matemática-ponto de reta
O segmento de reta AB terá um ponto médio (M) com as seguintes coordenadas (xM, yM). Observe que os triângulos AMN e ABP são semelhantes, possuindo os três ângulos respectivamente iguais. Dessa forma, podemos aplicar a seguinte relação entre os segmentos que formam os triângulos. Veja:
Podemos concluir que AB = 2 * (AM), considerando que M é o ponto médio do segmento AB. Temos:
xP – xA = 2*(xM – xA) xB – xA = 2*(xM – xA) xB – xA = 2xM – 2xA
2xM = xB – xA + 2xA
2xM = xA + xB xM = (xA + xB)/2
Utilizando método análogo, conseguimos demonstrar que yM = (yA + yB )/2.
Portanto, considerando M o ponto médio do segmento AB, temos a seguinte expressão matemática capaz de determinar a coordenada do ponto médio de qualquer segmento no plano cartesiano:
Percebemos que o cálculo da abscissa xM é a média aritmética entre as abscissas dos pontos A e B. Assim, o cálculo da ordenada yM é a média aritmética entre as ordenadas dos pontos A e B.
Exemplo 1
Dadas as coordenadas dos pontos A(4,6) e B(8,10) pertencentes ao segmento AB, determine as coordenadas do ponto médio desse segmento. xA = 4 yA = 6 xB = 8 yB = 10
xM = (xA + xB) / 2 xM = (4 + 8) / 2 xM = 12/2 xM = 6
yM = (yA + yB) / 2 yM = (6 + 10) / 2 yM = 16 / 2 yM = 8
As coordenadas do ponto médio do segmento AB é xM (6, 8).
Exemplo 2
Dados os pontos P(5,1) e Q(–2,–9), determine as coordenadas do ponto médio do segmento PQ. xM = [5 + (–2)] / 2 xM = (5 – 2) / 2 xM = 3/2 yM = [1 + (–9)] / 2 yM = (1 – 9) / 2 yM = –8/2 yM = –4
Portanto, M(3/2, –4) é o ponto médio do segmento