Introdu O Geometria Anal Tica
Para começar o estudo da geometria analítica, é necessário conhecer o Plano Cartesiano:
O Eixo Y (linha vertical) é chamado de eixo das ordenadas, enquanto que o Eixo X (linha horizontal), é chamado de eixo das abscissas.
O ponto P (ponto vermelho da figura) possui duas coordenadas: X e Y , que indicam em que lugar dos eixos das ordenadas e abscissas ele se encontra. Representa-se isso por (Xp, Yp).Os números romanos nos cantos mostram os quadrantes do plano cartesiano. Os pontos do eixo X que estão nos quadrantes II e III são negativos, enquanto que em I e IV são positivos. Os valores de Y nos quadrantes I e II são positivos, e nos restantes (III e IV), esses valores são negativos.
Distância entre dois pontos
Se soubermos as coordenadas de dois pontos no plano cartesiano (ponto A e B), é possível determinar a sua distância, utilizando o teorema de Pitágoras (a² = b² + c²)
PONTO MÉDIO DE UM SEGMENTO DE RETA
Sejam os pontos A, B, e um ponto M, que divide AB ao meio, podemos dizer que as coordenadas XM e YM do ponto médio M são obtidos por meio da média aritmética das abscissas e ordenadas, respectivamente, dos pontos dos quais M é ponto médio.
Ponto médio de um segmento
Dado o segmento de reta AB , o ponto médio de AB é o ponto M Î AB tal que AM = BM . Nestas condições, dados os pontos A(x1 , y1) e B(x2 , y2) , as coordenadas do ponto médio
M(xm , ym) serão dadas por:
Ponto médio Dados os pontos A(xA, yA), B(xB, yB) e P, que divide ao meio, temos:
Assim:
Logo, as coordenadas do ponto médio são dadas por:
Baricentro de um triângulo Observe o triângulo da figura a seguir, em que M, N e P são os pontos médios dos lados , respectivamente. Portanto, são as medianas desse triângulo:
Chamamos de baricentro (G) o ponto de intersecção das medianas de um triângulo. Esse ponto divide a mediana relativa a um lado em duas partes: a que vai do vértice até o baricentro tem o dobro da mediana da que