Interferômetro de Michelson
No fim do século XIX, após o trabalho de Maxwell na teoria electromagnética, ficou estabelecido que a luz é uma onda electromagnética. Nomeadamente, uma combinação de campos eléctrico e magnético variáveis, de forma que a variação de cada um deles induz o outro, produzindo campos que podem perdurar mesmo na ausência de cargas ou correntes eléctricas.
Um dos grandes éxitos da teoria electromagnética de Maxwell foi conseguir reproduzir o valor medido da velocidade da luz, a partir dos valores das constantes eléctricas e magnéticas medidas em experiências de electromagnetismo.
Mas como os campos eléctrico e magnético não são iguais em diferentes referenciais em movimento, a velocidade da luz não podia ser a mesma em todos os referenciais. Também parece óbvio que se nos deslocarmos em relação ao meio em que uma onda se propaga, observaremos uma velocidade de propagação diferente; assim, a velocidade de uma onda é diferente em diferentes referenciais.
Os físicos do século XIX acreditavam na existência de um espaço absoluto (o hipotético éter) onde as leis de Maxwell são válidas. A velocidade constante obtida a partir das equações de Maxwell seria a velocidade de propagação da luz nesse espaço absoluto. A medição da velocidade da luz em diferentes referenciais deveria permitir determinar a velocidade absoluta desses referenciais.
Muitas experiências foram feitas, usando luz proveniente das estrelas ou luz produzida por fontes na Terra. Todas essas experiências falhavam no detecção de qualquer modificação da velocidade da luz; não era possível observar diferenças na velocidade da luz quando a fonte e/ou o observador estavam em movimento. Por cada nova experiência que fracassava, aparecia uma nova teoria que admitia que o éter era arrastado parcialmente pela fonte ou pelo observador em movimento. O arraste do éter não parecia seguir nenhuma regra simples que pudesse ser determinada sem ambiguidade, mas parecia apenas um