Historia do magnetismo
As formulações de Maxwell em 1865 estavam em torno de vinte equações de vinte variáveis, que incluíam diversas equações hoje consideradas auxiliares das equações de Maxwell: a Lei de Ampère corrigida, uma equação de três componentes; a Lei de Gauss para carga, descrita por uma equação; a relação entre densidade de corrente total e de deslocamento, descrita por três equações, a relação entre campo magnético e o vetor potencial, descrita por uma equação de três componentes, que implica a ausência de monopolo magnético; a relação entre campo elétrico e os potenciais escalar e vetorial, descrita por equações de três componentes, que implicam a Lei de Faraday; a relação entre campos elétrico e de deslocamento, descrita por equações de três componentes, a Lei de Ohm, que relaciona intensidade de corrente e campo elétrico, descrita por equações de três componentes; e a equação de continuidade, que relaciona a intensidade de corrente e densidade de carga, descrita por uma equação.
A formulação matemática moderna das equações de Maxwell deve-se a Oliver Heaviside e Willard Gibbs, que em 1884 reformularam o sistema original de equações em uma representação mais simples, utilizando-se de cálculo vetorial. Maxwell também havia publicado seu trabalho, em 1873, utilizando notações com base em quaterniões, que acabou se tornando impopular. A mudança para notação vetorial produziu uma representação matemática simétrica que reforçava a percepção das simetrias físicas entre os vários campos. Esta notação altamente simétrica inspiraria diretamente o desenvolvimento posterior da física fundamental.
Como um dos resultados derivados das equações de Maxwell, surge a velocidade das ondas eletromagnéticas, dada por . Como consequência, interpretações de físicos logo em seguida sugeriam que as equações de Maxwell expressariam o eletromagnetismo apenas no referencial inercial do éter luminífero. Naquela época, para os físicos, o éter luminífero seria o meio pelo qual a luz