Funções
O estudo do produto cartesiano serviu de base para aprendermos sobre as relações. Estas agora são o alicerce para o estudo das funções, por isto, para que você assimile melhor este conceito, é importante que você revise os tópicos sobre produto cartesiano e relações.
As funções nada mais são que um tipo particular de relação que possuem uma propriedade específica.
Para iniciarmos o estudo das funções vamos começar analisando a relação , cujo diagrama de flechas pode ser visto ao lado:
Observe que todos os elementos do conjunto A possuem uma flecha em direção a um único elemento do conjunto B.
Em outras palavras, não há no conjunto A qualquer elemento que não esteja associado a um elemento do conjunto B e os elementos de A estão associados a apenas um elemento de B.
Por possuir tal propriedade, dizemos que esta relação é uma função f de A em B representada por:
Domínio da Função
Ao conjunto A damos o nome de domínio da função.
O domínio é o conjunto de partida. Ele composto de todos os elementos do conjunto de partida.
Neste nosso exemplo o domínio da função f é representado por D(f) = { -3, 0, 3 }, ou seja, o domínio desta função contém todos os elementos do conjunto A.
Como supracitado, para que tenhamos uma função, todos os elementos do domínio devem estar associados a um e somente um dos elementos de B.
Contradomínio da Função
Ao conjunto B damos o nome de contradomínio da função.
O contradomínio é o conjunto de chegada. Ele composto de todos os elementos do conjunto de chegada.
Em nosso exemplo o contradomínio da função f é representado por CD(f) = { 0, 9, 18 }, isto é, o contradomínio desta função contém todos os elementos do conjunto B.
Segundo o conceito de função não é necessário que todos os elementos de B estejam relacionados aos elementos do domínio. Note que no conjunto B o elemento 18 não recebe nenhuma flecha, isto é, não está relacionado a qualquer elemento de A.
Uma outra coisa que deve ser observada é que em uma