Função do 1° grau
Toda função do 1° grau é representada por uma expressão geral; portanto seu gráfico é sempre uma reta. O termo “a” é chamado coeficiente angular da função, que determina a inclinação da reta em relação ao eixo x. A função f (x) = 2x + 1, é uma função do 1 ° grau e seu gráfico é uma reta com inclinação 2, ou seja, a tangente do ângulo alfa é 2.
Uma função do 1° grau pode ser crescente ou decrescente. Ela será crescente quando os valores de f (x) aumentarem à medida que x avançar em sentido positivo do eixo x, e decrescente quando os valores de f (x) diminuírem.
O estudo das funções é importante, uma vez que elas podem ser aplicadas em diferentes circunstâncias, a função é utilizada para relacionar valores numéricos de uma determinada expressão algébrica de acordo com cada valor, sendo assim a função do 1° grau relacionará os valores numéricos obtidos de expressões algébricas do tipo (ax + b), constituindo, assim a função f (x) = ax + b, onde a e b são números reais dados, e a 0.
Na função f (x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.
Alguns exemplos de funções do 1 ° grau: f(x) = 5x - 3, onde a = 5 e b = - 3 f(x) = -2x - 7, onde a = -2 e b = - 7 f(x) = 11x, onde a = 11 e b = 0
Para definir a função do 1° grau basta haver uma expressão algébrica do 1° grau, o objetivo da função é relacionar para cada valor de x um valor para o f(x). Um exemplo para a função: f(x) = x – 2.
X = 1 , temos que f(1) = 1 – 2 = -1
X = 4, temos que f(4) = 4 – 2 = 2
Os valores numéricos mudam conforme o valor de x é alterado, sendo assim obtém diversos pares ordenados, constituídos da seguinte maneira: (x, f(x)), para cada coordenada x, obtém uma coordenada f (x), o que auxilia na construção de gráficos das funções, portanto para que o estudo das funções do 1° grau seja realizado com sucesso, é preciso compreender bem a construção de um gráfico e a manipulação algébrica das incógnitas e dos coeficientes.
O