função 1 grau
Chama-se função do 1.° grau toda função definida de por f(x) = ax + b com a, b e a 0.
Exemplos:
f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) f(x) = 6x, onde a = 6 e b = 0 (função linear) f(x) = x, onde a = 1 e b = 0 (função identidade) GRÁFICO DA FUNÇÃO DO 1.º GRAU O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é
D(f) = e sua imagem é Im(f) = . 1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0)
Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários para x e determinando suas ../imagens (y).
Para x = 0 y = 3
Para x = – 2 y = -1
Para x = – 1 y = 1 2.º exemplo: Construir o gráfico da função f (x) = – 2x + 3 (a = – 2 < 0) Conclusão:
Se a > 0, a função y = ax + b é crescente.
Se a < 0, a função y = ax + b é decrescente. ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: ax + b = 0 ⇒ ax = -b ⇒ x = - a b
.
raiz ou zero - a b