fisica 2 Força resultante e inercia
Em um cabo de guerra bidimensional, Alex, Betty e Charles puxam horizontalmente um pneu de carro tal como na figura abaixo. O pneu permanece estacionário apesar dos três garotos puxando. Alex puxa com uma força FA= 220 N e Charles puxa com a força FC = 170 N. Qual é o módulo da força FB de Betty?
Resposta: 240,8 N
Solução
As três forças não aceleram o pneu, ele permanece parado. Então podemos dizer que nesse caso, sua aceleração é zero. a=0 Usando a 2a Lei de Newton:
Vamos representar as 3 forças em um diagrama de forças, no sistema de coordenadas x-y
Veja que os vetores têm orientações diferentes. Do que você viu sobre a soma de vetores, na Aula 1, para fazer esta soma, teremos que trabalhar com as componentes dos vetores. Aproveite para fazer mais uma revisão sobre esse assunto
Componentes no eixo y:
Substituindo na equação (1), teremos:
Problema resolvido 5-6
Na fig. 5-17ª. Um bloco b de massa M = 15,0kg está pendurando por uma corda a parte de no N de massa m o qual está pendurado em um teto por intermédio de duas outras cordas. As cordas têm massas desprezíveis e o modulo da força gravitacional sobre o nó. Quais são as tensões sobre as três cordas?
Solução
T-F=ma
T-mg=m(0)=0
T=147 N
T1+T2+T3=m a
T1+T2+T3=0
T1x+T2x+T3x=0
-T1 Cos28° + T2 cos 47° +0 = 0
T1+T2y+T3y=0
T1 Sem 28°+T2 sem 47° - T3 = 0
T1 Sem 28°+T2 sem 47° - 147 N = 0
Problema Resolvido 5-8 Na fug. 5-19ª um passageiro de massa m=722,2 kg está de pé em uma balança no interior de um elevador. Estamos interessados nas leituras da balança quando o elevador está parado e quando está se movendo para cima e para baixo.
A) Escreva uma equação para a leitura da balança em função da aceleração vertical do elevador.
Fn – Fg = ma
Fn = Fg + ma
Fn = m(g + a)
B) Qual é a leitura da balança se a cabine está em repouso ou subindo com velocidade constante de 0,5 m/s ?
Fn = ( 72,2 kg )(9,8 m/s2 + 0) = 708 N
C) Qual é a leitura da balança se a cabina acelera para cima a