Aula 7 Perdas De Energia Espec Fica Regimes De Escoamento
Disc. Hidráulica
Condutos Livres
Energia ou Carga Específica
Profª Msc Nazaré Alves
Manaus/AM
Introdução
A energia (H) correspondente a uma seção transversal de um canal é dada pela soma de três cargas: Cinética, Altimétrica e Piezométrica.
Energia Total
U2
H Z yα
2g
α – coef. para corrigir a desigualdade distribuição de velocidade;
Introdução
Problemas
de
escoamentos
através
de
singularidades, como cota de fundo, alargamentos e estreitamentos: 2
U
E yα
2g
Introdução
Assim, para uma dada Vazão Q a Energia Específica (E) é a distancia vertical entre o fundo do canal e a linha de energia, correspondendo à soma de duas parcelas, ambas funções de y.
Energia Específica
2
U
E y
2g
2
Q
E y
2gA²
mas A = f (y)
Curvas y x E para q = Cte e y x q para E = Cte
Seção retangular:
Q q V .y b E
q
2
2gy
2
Curvas y x E para q = Cte e y x q para E = Cte
Considerando que E varia com y, para um dado valor Cte de q, Gráfico no plano E - y
E E1 E 2
E1 y
E2
Reta a 45º
q2
2gy
2
Curva do tipo hiperbólico
Condições de contorno:
Se y 0, E1 0, E 2 E E 2
Se y , E 2 0, E1 E E1 E 2 y
Curvas y x E para q = Cte e y x q para E = Cte
Curva y x E tem duas assíntotas:
Eixo das abscissas
q²
E2
2 gy ²
Bissetriz dos eixos coordenados
E1 y
Curvas y x E para q = Cte e y x q para E = Cte
Representando graficamente, tem-se:
U2
E y
2g
2
E1
E2
q
E y
2gy²
Y1 – Esc. Rápido, torrencial ou supercrítico
Y2 – Esc. Lento, fluvial ou subcrítico Y1 e Y2 – profundidades alternadas ou correspondentes Figura 1: Relação altura d’água-energia específica – Q=Cte
Curvas y x E para q = Cte e y x q para E = Cte q varia com a altura d’água y para uma dada energia específica constante, E = E0.
q
2g y
E0 y
Gráfico y x q, observando as condições de contorno:
Se y 0, q 0
(não há água)
Se y E 0 , q 0
(há água em condição estática)
Valor máximo de q para algum