Assunto
?Interseção
Os elementos que fazem parte do conjunto interseção são os elementos comuns aos conjuntos relacionados.
Exemplo 1:
Dados dois conjuntos A = {5,6,9,8} e B = {0,1,2,3,4,5}, se pedimos a interseção deles teremos: A ∩ B = {5}, dizemos que A “inter” B é igual a 5.
Exemplo 2:
Dados os conjuntos B = {-3, -4, -5, -6} e C = {-7, -8, -9}, se pedirmos a interseção deles teremos: B ∩ C = { } ou B ∩ C =
, então B e C são conjuntos distintos.
Exemplo 3:
Dados os conjuntos D = {1,2,3,4,5} e E = {3,4,5}. A interseção dos conjuntos ficaria assim: E ∩ D = {3,4,5} ou E ∩ D = E, pode ser concluído também que
E D.
?União
Conjunto união são todos os elementos dos conjuntos relacionados.
Exemplo 1:
Dados os conjuntos A = { x | x é inteiro e -1 < x < 2} e B = {1,2,3,4} a união desses dois conjuntos é :
A U B = {0,1,2,3,4}
Exemplo 2:
Dados os conjuntos A = {1,2,3} e B = {1,2,3,4,5} a união desses conjuntos é:
A U B = {1,2,3,4,5}, nesse caso podemos dizer que A U B = B.
?Diferença entre dois conjuntos.
Dados dois conjuntos A e B chama-se conjunto diferença ou diferença entre A e B o conjunto formado pelos elementos de A que não pertencem a B.
O conjunto diferença é representado por A – B.
Exemplo 1:
A = {1,2,3,4,5} e B = {3,4,5,6,7} a diferença dos conjuntos é:
A – B = {1,2}
Exemplo 2:
A = {1,2,3,4,5} e B = {8,9,10} a diferença dos conjuntos é:
A – B = {1,2,3,4,5}
Exemplo 3:
A = {1,2,3} e B = {1,2,3,4,5}a diferença dos conjuntos é:
A–B=
Exemplo 4:
Dados os conjuntos A = {1,2,3,4,5,6} e B = {5,6}, a diferença dos conjuntos é:
A – B = {1,2,3,4}. Como B A podemos escrever em forma de complementar:
A–B=
A
B = {1,2,3,4}.
Por Danielle de Miranda
Graduada em Matemática
Veja mais!
Definição de Conjunto
Símbologia matemática nos conjuntos.
Notações importantes sobre conjuntos
Vazio, unitário, pertence, nao pertence, contido, não contido.