Aprender-com-Big-Data no ensino de ciências
Learning-with-Big-Data in science teaching
Renato P. dos Santos1
Isadora Luiz Lemes2
Resumo
Vivemos num universo digital que se estima conter hoje cerca de 5 zettabytes (aproximadamente
5×1021) de dados. Essa enorme quantidade de dados, processada em computadores extremamente velozes, com técnicas otimizadas, permite encontrar insights em novos e emergentes tipos de dados e conteúdos para responder a perguntas que foram anteriormente consideradas fora de nosso alcance. Essa é a ideia de Big Data.
Os objetivos deste projeto, de caráter construcionista, são investigar como se desenvolve o processo de ensino e aprendizagem de Ciências Exatas, quando mediado pelo computador e por softwares aplicativos públicos e gratuitos de Big Data, tais como o Google Correlate e o Google Trends, desenvolver estratégias de ensino que tirem o melhor proveito dessas ferramentas para o ensino e aprendizagem de Ciências Exatas e, com isso, concluir sobre a viabilidade do uso Big Data como mediador no aprendizado de Ciências Exatas, visando uma preparação de nossos estudantes, tanto para os desafios científicos propostos pelo Big Data ao mundo real quanto sobre uma melhor compreensão das noções de fenômeno, observação, medida, leis físicas, teoria e causalidade, dentre outras. O objetivo deste trabalho é investigar a viabilidade dessa proposta através de uma primeira aplicação da utilização de Big Data no Ensino de Ciências. Em termos metodológicos, a aplicação foi desenvolvida dentro da disciplina História e Epistemologia da Física, do curso de Licenciatura em Física da
Ulbra, da qual o pesquisador é titular, realizada durante o primeiro semestre letivo de 2014, contando este semestre com 7 alunos de diversos períodos do curso. Os estudantes foram solicitados a pesquisar correlações de termos de busca relativos ao Ensino de Física no Google Correlate, à sua livre escolha. Obtidos os termos de busca que melhor se