Algebra
2. Dadas as matrizes A = calcule: (a) A + B (b) A − C (c) X = 4A − 3B + 5C.
4 −1 −6
,B=
eC =
,
1 3
2 9
3
x1
3. Efetue a multiplica¸˜o das matrizes A = −2 −5 ca
7 e X = x2 . x3 −8
1 −2
3 1 4. Dadas as matrizes A = eB= 7 −4 5 9 (a) A.B (b) B.A
1 3 −5 −7 6 2 −8 3
, calcule:
5. Nos exerc´ ıcios abaixo, verifique se a matriz B ´ e −2 −4 −6 −3 2 2 5 (a) A = −4 −6 −6 e B = 2 − 2 −1 1 −4 −4 −2 4 5 0 9 3 4 2 e B = −7 2 5 (b) A = 3 0 1 6 8 −6 −1 −2
a inversa da matriz A: −3 2 3 2 −1 2 .
6. Calcule os valores de m e n para que a matriz B seja a inversa da matriz A. A= m −2 −22 n eB= 5 22 2 9 1
5
0
6
1 −3 −2 4 7 8 e B = 5 9 0 6 3 −8 , calcule
−8 0 3 7. Dadas as matrizes A = −2 2 7 1 −1 −5 (AB)T . 8. Dadas as matirzes:
A= 0 1 1 0 ,B= 6 9 −4 −6 ,C= 5 10 −2 −4
−1
2
6
e D = 3 −2 −9 −2 0 3
(a) Calcule A.AT (b) Calcule B 2
(c) Calcule C 2
(d) Calcule D3 3 4 1 4 −1 3 9. Dadas as matrizes A = −5 −2 −9 e B = 3 0 1 7 8 6 7 2 −4 (a) detA (b) detB (c) det(A + B)
, calcule:
10. Verifique, usando o exerc´ anterior, se det(A + B) = detA + detB. ıcio −2 3 1 −1 0 1 2 3 11. Calcule o determinante da matriz A = . 1 −1 1 −2 4 −3 5 1 5 12. Resolva a equa¸˜o ca 1 3 = 100.
3x 0 1 7x 2 1
13. Encontre a inversa das seguintes matrizes: 3 5 1 2 0 0 0 0 1 0 2 1 2 2 2
(a) A =
1 0 2 1 (b) A = 3 2 4 3
(c) A = 3 4 7 1 2 5 2 0 0 (d) A = 0 3 0 0 0 7
2
14. Classifique e resolva os sistemas: 5x + 8y = 34 10x + 16y = 50 4x − y − 3z = 15 (d)