O numero imaginario i

1129 palavras 5 páginas
1.0 O NUMERO IMAGINARIO I

Em Matemática, um número imaginário é um número complexo com parte real igual a zero, ou seja, um número da forma b i, em que i é a unidade imaginária. Em alguns contextos, exige-se que b seja diferente de zero. O termo foi inventado por René Descartes em 1637 no seu La Géométrie para designar os números complexos em geral, e tem esse nome pelo objetivo inicialmente pejorativo: na época, acreditava-se que tais números não existissem.

2.0 FORMA ALGÉBRICA DO NUMERO COMPLEXO

A forma algébrica pela qual representaremos um numero complexo é a + bi como a e b Є R.
A forma algébrica de representar um numero complexo é mais pratica e mais utilizada nos cálculos.
Definindo as partes que formam um numero complexo z = a + bi. z é um numero complexo qualquer. a é a parte real do numero complexo z. b é a parte imaginaria do numero complexo z.
O conjunto dos números que formam a parte real é representado por Re (z).
O conjunto dos números que formam a parte imaginária é representado por Im (z).
Exemplos de como identificar a parte real e a parte imaginaria de um numero complexo:

z = - 3 + 5i
Re(z) = -3
Im(z) = 5

z = -5 + 10i
Re(z) = -5
Im(z) = 10

z = 1/2 + (1/3)i
Re(z) = 1/2
Im(z) = 1/3

As coordenadas a e b podem assumir qualquer valor real, dependendo do valor que eles assumirem o número complexo irá receber um nome diferente:
Quando a e b forem diferentes de zero dizemos que o número complexo é imaginário: z = 2 + 5i

Quando o valor de a é igual a zero e o de b é diferente de zero dizemos que o número complexo é imaginário puro: z = 0 + 2i z = 2i

Quando a diferente de zero e b igual a zero dizemos que o número complexo será real. z = 5 – 0i z = 5

Exemplo:

Determine o valor de k para que z =(k-6) + 7i, seja:

Número Real
Para que o complexo seja um número real devemos fazer b = 0 e a ≠ 0. k – 6 ≠ 0 então: k ≠ 6

Imaginário puro
Para que um número complexo seja

Relacionados

  • resumo
    1026 palavras | 5 páginas
  • Numeros complexos
    1083 palavras | 5 páginas
  • numeros complexos
    1523 palavras | 7 páginas
  • 35392 exercicios n
    1069 palavras | 5 páginas
  • Números Complexos
    3176 palavras | 13 páginas
  • fisica
    316 palavras | 2 páginas
  • eletricidade
    1339 palavras | 6 páginas
  • equacoes de maxwell
    1519 palavras | 7 páginas
  • Matemática
    2563 palavras | 11 páginas
  • Tarefa Complementar 3
    920 palavras | 4 páginas