A história do surgimento das técnicas de integração
A utilização desta fórmula para melhorar o processo de integração implica na necessidade de uma breve explanação, o processo consiste em observar a função a ser integrada como sendo uma integral , ou seja, devemos separar a função em duas partes: uma, chamamos de u, que consideraremos função primitiva e outra dv que será uma diferencial, desta forma, faremos a integração da parte dv para encontrar v e depois subtrairemos a integral da mesma com relação a diferencial de u: du. Parece um tanto incomum a princípio, porém após o hábito no uso da técnica, esta se torna muito útil.
Outro fato deve ser explorado: como o processo demanda a integração da diferencial dv nos vem a questão sobre a necessidade de utilização da constante de antidiferenciação C, portanto façamos a verificação da fórmula utilizando-a:
Se , Ou seja, a constante é dispensável para o cálculo da integral que resulta em v.
Considere a seguinte integral:
A substituição consiste simplesmente em aplicar uma mudança de variáveis , onde é uma função qualquer contínua no domínio de integração. Fazendo :
Esta técnica, que é fruto da regra da cadeia para derivadas, é muito útil quando a função a ser integrada pode ser representada como um produto de funções, onde uma é derivada da outra (podendo diferir de uma constante).
Nem sempre a substituição adequada é evidente; muitas vezes é necessário fazer substituições pouco intuitivas (tais como substituição através de funções trigonométricas). Para tal, são necessários prática e alto poder de carteação.