Trinomio
Esta maneira de fatorar expressões algébricas é utilizando a regra do trinômio do quadrado perfeito. Para fatorar uma expressão algébrica utilizando esse 3º caso, a expressão deverá ser um trinômio e formar um quadrado perfeito.
Então, para compreender melhor esse tipo de fatoração vamos recapitular o que é um trinômio e quando um trinômio pode ser um quadrado perfeito.
Trinômio
Para que uma expressão algébrica seja considerada um trinômio, ela deverá conter exatamente 3 monômios. Veja alguns exemplos de trinômios:
x3 + 2x2 + 2x
- 2x5 + 5y – 5
ac + c – b
É importante ressaltar que nem todos os trinômios são quadrados perfeitos. É preciso verificar se um trinômio pode ser escrito na forma de um quadrado perfeito.
Quadrado perfeito
Veja a demonstração do que é um quadrado perfeito:
Um número é um exemplo de quadrado perfeito, basta que esse número seja o resultado de outro número elevado ao quadrado, por exemplo: 36 é um quadrado perfeito, pois 62 = 36.
Agora, para aplicar isso em uma expressão algébrica, observe o quadrado (todos os lados iguais) abaixo com lados x + y. O valor desse lado é uma expressão algébrica.
[pic]
Para calcularmos a área desse quadrado podemos seguir duas formas diferentes:
1º forma: A fórmula para o cálculo da área do quadrado é A = Lado2, então como o lado nesse quadrado é x + y, basta elevá-lo ao quadrado.
A1 = (x + y) . (x + y) que é o mesmo que A1 = (x + y)2, então podemos dizer que:
O resultado dessa área A1 = (x + y)2 é um quadrado perfeito.
2º forma: Esse quadrado foi dividido em quatro retângulos, onde cada um tem a sua própria área, então a soma de todas essas áreas é a área total do quadrado maior, ficando assim:
A2 = x2 + xy + xy + y2, como xy e xy são semelhantes podemos somá-los
A2 = x2 +2xy + y2
O resultado da área A2 = x2 +2xy + y2 é um trinômio.
As duas áreas encontradas representam a área do mesmo quadrado, então:
A1 =