Transformada De Fourier
A transformada de Fourier, epônimo a Jean-Baptiste Joseph Fourier,1 é uma transformada integral que expressa uma função em termos de funções de base sinusoidal, i.e., como soma ou integral de funções sinusoidais multiplicadas por coeficientes ("amplitudes"). Existem diversas variações directamente relacionadas desta transformada, dependendo do tipo de função a transformar. A transformada de Fourier pode ser vista como um caso particular da transformada Z.
Aplicações
As transformadas contínuas e discretas de Fourier têm muitas aplicações em disciplinas científicas — em física, física e química quântica, teoria dos números, análise combinatória, processamento de sinal, processamento de imagem, teoria das probabilidades, estatística, criptografia, acústica, oceanografia, sismologia, óptica, geometria e outras áreas. Nos campos relacionados com o processamento de sinal, a transformada de Fourier é tipicamente utilizada para decompor um sinal nas suas componentes em frequência e suas amplitudes.
As transformadas são operadores lineares e, com a devida normalização, são também unários (uma propriedade conhecida como o teorema de Parseval ou, mais geralmente, como o teorema de Plancherel, e mais geral ainda, a dualidade de Pontryagin).
As transformadas são invertíveis, e a transformada inversa tem quase a mesma forma que a transformada.
As funções de base senoidal são funções de diferenciação, o que implica que esta representação transforma equações diferenciais ordinárias lineares com coeficientes constantes em equações algébricas ordinárias. (Por exemplo, num sistema linear invariante no tempo, a frequência é uma quantidade conservada, logo o comportamento em cada frequência pode ser resolvido independentemente.)
Através do teorema da convolução, as transformadas tornam a complicada operação de convolução em multiplicações simples, o que as torna num método eficiente de calcular operações baseadas em convolução, como a multiplicação polinomial,