Teoria dos conjuntos
O conhecimento prévio de tal teoria serve como base para o desenvolvimento de outros temas na matemática, como relações, funções, análise combinatória, probabilidade, etc.
Como definição intuitiva de conjuntos, dadas por Cantor, surgiam em sua teoria exemplos como:
1. um conjunto unitário possui um único elemento
2. dois conjuntos são iguais se possuem exatamente os mesmos elementos
3. conjunto vazio é o conjunto que não possui nenhum elemento
4. Os conjuntos podem ser finitos ou infinitos. Um conjunto finito pode ser definido reunindo todos os seus elementos separados por vírgulas. Já um conjunto infinito pode ser definido por uma propriedade que deve ser satisfeita por todos os seus membros.
A ideia de conjunto era um conceito primitivo e auto explicativo de acordo com a teoria; não necessitaria de definição.
Esta forma de representar um conjunto, pela enumeração de seus elementos é denominada "forma de listagem". Poderia-se representar o mesmo conjunto por uma determinada propriedade de seus elementos, sendo x, por exemplo, um número qualquer do conjunto Z representado abaixo:
Z = {1,3,5,7,9,11, ... } teríamos, concluindo:
Z = { x | x é ímpar e positivo } = { 1,3,5, ... }.
Merece destaque outras