Serie de fourier
Resumo As séries de Fourier funcionam como um processo global na resolução de problemas matemáticos, enquanto que uma série de potências apresenta uma funcionalidade é local. Através da série de Taylor de uma função f, obtemos o polinômio de Taylor, o qual dá uma aproximação para a função f nas vizinhanças de um ponto, entretanto esta função f tem que ser obrigatoriamente suave, logo para uma aproximação global, a série de Taylor falha, uma vez que a aproximação de Taylor é local e não global. A série de Fourier é importante também para obter o limite de f em pontos distantes de x, bem como para encontrar valores aproximados para uma integral sobre um intervalo, pois ela trabalha com funções periódicas.
Palavras-chave: Séries de Fourier. Função par. Função ímpar.
Introdução
Jean Baptiste Joseph Fourier (1768-1830) foi um importante matemático e físico de origem francesa, que através do seu estudo sobre a propagação de calor em corpos sólidos analisou a decomposição de funções periódicas em séries trigonométricas convergentes, mostrando que qualquer função, por maior complexibilidade que possua, pode ser decomposta em uma soma de senos e cossenos, por isso essas séries receberam o nome de séries de Fourier em sua homenagem. As séries de Fourier apresentam vastas aplicações em diversas disciplinas científicas – na física e química quântica, acústica, oceanografia, processamento de sinal –, logo, torna-se indispensável uma análise dirigida das mesmas com a finalidade de compreenderem-se melhor os diversos fenômenos que ocorrem no mundo.
Funções periódicas
Uma função f de R em R é periódica, se existe um número p pertencente R tal que para todo x pertencente a R: f(x+p)=f(x). Na figura 2.1 tem-se um exemplo de uma função periódica.
Figura 2.1 Função periódica
Muitas vezes existem vários números com tal propriedade, sendo que o menor número real positivo com essa característica é chamado de período fundamental de f.