Recursos Humanos
DA
SEMANA
FINAL
DA
SEMANA
SEMANAS
21/02
25/02
4
ASSUNTOS ABORDADOS
•
Resolver
problemas significativos envolvendo operações com conjuntos.
• Reconhecer e diferenciar os conjuntos numéricos. •
Exercícios de fixação.
4) OPERAÇÕES COM CONJUNTOS:
4.1)Igualdade ( = )
Dois conjuntos são iguais quando possuem os mesmos elementos.
Simbologia: A = B ⇔ ( ∀x, x∈A ⇔ x ∈B )
4.2) União ( U )
Chama-se união ou reunião, de A e B o conjunto de elementos formado pelos elementos de A e de B.
Simbologia: A U B = { x; x∈A ou x ∈B}.
Exemplo: {0,1,3} U { 3,4,5 } = { 0,1,3,4,5}.
Propriedades imediatas:
a) A U A = A
b) A U Ø = A
c) A U B = B U A (a união de conjuntos é uma operação comutativa)
d) A U U = U , onde U é o conjunto universo.
4.3) Interseção ( ∩ )
Chama-se interseção de A e B o conjunto de elementos formado pelos elemento comuns a A e B.
Simbologia: A ∩ B = {x; ; x∈A e x ∈B}.
Exemplo: {0,2,4,5} ∩ { 4,6,7} = {4}.São os elementos que são comuns aos conjuntos A e B.
Propriedades imediatas :
a) A ∩ A = A
b) A ∩ Ø = Ø
c) A ∩ B = B ∩ A ( a interseção é uma operação comutativa)
d) A Ø U = A onde U é o conjunto universo.
4.4)Diferença ( - )
Chama-se diferença entre os conjuntos A e B nessa ordem o conjunto cujo elementos pertencem a A, mas não pertencem a B.
Observe que os elementos da diferença são aqueles que pertencem ao primeiro conjunto, mas não pertencem ao segundo.
Simbologia: A - B = {x ; x ∈ A e x ∉ B}.
Exemplos:
{ 0,5,7} - {0,7,3} = {5}.
{1,2,3,4,5} - {1,2,3} = {4,5}.
Propriedades imediatas:
a) A - Ø = A
b) Ø - A = Ø
c) A - A = Ø
d) A - B ≠ B - A ( a diferença de conjuntos não é uma operação comutativa).
4.5)Complementar de um Conjunto
Trata-se de um caso particular da diferença entre dois conjuntos. Assim é, que dados dois conjuntos A e B, com a condição de que B ⊂ A , a diferença A - B chama-se, neste caso, complementar de B em relação a A .
Simbologia: CAB = A - B.
LISTA 02
1) Sendo A =