pirâmides
Definição
Numa pirâmide podemos encontrar os seguintes elementos:
Classificação Uma pirâmide é reta quando a projeção ortogonal do vértice coincide com o centro do polígono da base. Toda pirâmide reta, cujo polígono da base é regular, recebe o nome de pirâmide regular. Ela pode ser triangular, quadrangular, pentagonal etc., conforme sua base seja, respectivamente, um triângulo, um quadrilátero, um pentágono etc. Veja:
Observações:
1ª) Toda pirâmide triangular recebe o nome do tetraedro. Quando o tetraedro possui como faces triângulos eqüiláteros, ele é denominado regular ( todas as faces e todas as arestas são congruentes).
2ª) A reunião, base com base, de duas pirâmides regulares de bases quadradas resulta num octaedro. Quando as faces das pirâmides são triângulos eqüiláteros, o octaedro é regular.
...................................................................................................
Volume da Pirâmide
O volume de uma pirâmide é dado em função da área de sua base e da altura h, de acordo com a fórmula abaixo:
Onde
V → é o volume
Ab → é a área da base da pirâmide h → é a altura da pirâmide
Exemplo 1. Calcule o volume da pirâmide de base quadrada a seguir:
Solução: Pela análise da figura, temos que:
h = 9 cm
Ab = 62 = 36 cm2
Assim, o volume da pirâmide será dado por:
Exemplo 2. Calcule o volume de uma pirâmide regular de base hexagonal sabendo que sua altura é de 12 cm e que cada aresta da base mede 8 cm.
Solução: Primeiro, vamos calcular a área da base dessa pirâmide. Sabemos que a base da pirâmide é um hexágono regular de 8 cm de aresta. A área do hexágono regular é dada por:
Conhecida a medida da área da base da pirâmide, podemos utilizar a fórmula do volume.
Tronco de Pirâmide
O tronco de pirâmide é obtido ao se realizar uma secção transversal numa pirâmide, como mostra a figura:
O