Parábola
Trabalho # 1
Um projéctil é lançado de uma plataforma a 15 m do solo e atinge o ponto mais alto a 25 m do solo. A distância por ele percorrida desde o ponto de lançamento ao ponto onde atinge a altura máxima é de 11; 123 m. Assumindo que o projéctil descreve uma trajectória parabólica, determine um valor aproximado para: a) o ponto de embate no solo; b) o ângulo de lançamento.
Entrega do relatório até 7/Out./2011 (sexta-feira).
Análise Matemática I 11/12 INV
Trabalho #1
Relatório elaborado por: Ricardo Jorge Apolinário de Carvalho, aluno nº 36432, LE11N
Como o projéctil realiza uma parábola com concavidade voltada para baixo, podemos enunciar a função que a representa . Analisando o enunciado do problema podemos concluir que o vértice da parábola é quando Substituindo os valores, , resta-nos descobrir os valores de e para tal recorremos ao enunciado que determina os pontos de partida do projéctil em que para y=15m x=0m ficamos então com em que . A função da curva do projéctil é então:
a) O ponto de embate no solo será quando
e para tal vamos achar os zeros da função:
Como o projéctil segue o sentido positivo podemos dizer que o ponto de colisão com o solo será aproximadamente aos . b) Para calcularmos o ângulo de lançamento, recorremos ao cálculo de coordenadas num espaço curto entre em que obtemos respectivamente . Utilizamos o “arctan” para descobrir o ângulo em que a o cateto oposto é 0,185 e o cateto adjacente é 0.1 e o resultado é um grau de inclinação do lançamento 61.60 o que são 61º e 6’.
4 de Outubro de 2011