Números complexos
O conjunto dos números complexos é o conjunto que possui maior cardinalidade, afinal ele contém todos os outros conjuntos. É necessário, pois, compreender os processos das operações (aritméticas, trigonométricas, algébricas) envolvendo elementos desse conjunto, assim como a representação geométrica dos números complexos.
Portanto, nessa seção serão abordados assuntos como: concepções básicas do número complexo, operações aritméticas com números complexos, operações trigonométricas com os números complexos, o Plano de Argand-Gauss, entre outros artigos que se relacionam com os números complexos – números de grande importância e aplicabilidade.O fato de um número negativo não ter raiz quadrada parece ter sido sempre claro para os matemáticos que se depararam com esta questão, até a concepção do modelo dos números complexos.1 2 Um número complexo é um número z que pode ser escrito na forma z = x + iy, em que x e y são números reais e i denota a unidade imaginária. Esta tem a propriedade i^2 = -1, sendo que x e y são chamados respectivamente parte real e parte imaginária de z.3 4
O conjunto dos números complexos, denotado por \mathbb{C}, contém o conjunto dos números reais. Munido de operações de adição e multiplicação obtidas por extensão das operações de mesma denominação nos números reais, adquire uma estrutura algébrica denominada corpo algebricamente