Numeros reais
Números Naturais (N): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ....
Números Inteiros (Z): ..., –8, –7, –6, –5, –4, –3, – 2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, .....
Números Racionais (Q): 1/2, 3/4, 0,25, –5/4,
Números Irracionais (I): √2, √3, –√5, 1,32365498...., 3,141592....
Podemos concluir que o conjunto dos números reais é a união dos seguintes conjuntos:
N U Z U Q U I = R ou Q U I = R
Os números reais podem ser representados por qualquer número pertencente aos conjuntos da união acima. Essas designações de conjuntos numéricos existem no intuito de criar condições de resolução de equações e funções. As soluções devem ser dadas obedecendo padrões matemáticos e de acordo com a condição de existência da incógnita na expressão. jdeknxjncrwcuwnecieucnvufvnimmcmcwcew. cewcecewvwvervewcewvewcvwetvrvrevrevrv. ewcececewceceweececwecwececewcewcew. O conjunto dos números reais \mathbb{R}\, é uma expansão do conjunto dos números racionais que engloba não só os inteiros e os fracionários, positivos e negativos, mas também todos os números irracionais.1 2
Diagrama de alguns subconjuntos de números reais.
Os números reais são números usados para representar uma quantidade contínua (incluindo o zero e os negativos). Pode-se pensar num número real como uma fracção decimal possivelmente infinita, como 3,141592(...). Os números reais têm uma correspondência biunívoca com os pontos de uma reta.
Denomina-se corpo dos números reais a colecção dos elementos pertencentes à conclusão dos racionais,3 formado pelo corpo de frações associado aos inteiros (números racionais) e a norma associada ao