NUMEROS BINARIOS
Um conjunto de 8 trigramas e 64 hexagramas, análogos a números binários com precisão de 3 e 6 bits, foram utilizados pelos antigos chineses no texto clássico I Ching.7 Conjuntos similares de combinações binárias foram utilizados em sistemas africanos de adivinhação tais como o Ifá, bem como na Geomancia do medievo ocidental.
Uma sistematização binária dos hexagramas do I Ching, representando a sequência decimal de 0 a 63, e um método para gerar tais sequências, foi desenvolvida pelo filósofo e estudioso Shao Yong no século XI. Entretanto, não há evidências que Shao Yong chegou à aritmética binária.
O sistema numérico binário moderno foi documentado de forma abrangente por Gottfried Leibniz no século XVIII em seu artigo "Explication de l'Arithmétique Binaire". O sistema de Leibniz utilizou 0 e 1, tal como o sistema numérico binário corrente nos dias de hoje.
Em 1854, o matemático britânico George Boole publicou um artigo fundamental detalhando um sistema lógico que se tornaria conhecido como Álgebra Booleana. Seu sistema lógico tornou-se essencial para o desenvolvimento do sistema binário, particularmente sua aplicação a circuitos eletrônicos.
Em 1937, Claude Shannon produziu sua tese no MIT que implementava Álgebra Booleana e aritmética binária utilizando circuitos elétricos pela primeira vez na história. Intitulado "A Symbolic Analysis of Relay and Switching Circuits", a tese de Shannon praticamente fundou o projeto de circuitos digitais.
Códigos Binários[editar | editar código-fonte]
A conversão de um número decimal no seu equivalente binário é chamada codificação. Um número decimal é expresso como um código binário ou número binário. O sistema numérico binário, como apresentado, é conhecido como código