Método de Resolução de Exercios de Limite
Antes de mais nada, é preciso substituir o valor que “x” está tendendo, para saber a procedência do exercício, veja:
- Se após a substituição do valor que “x” está tendendo, na função, der algo do tipo:
K/0 => Podemos concluir que o limite da função tenderá ao infinito (positivo ou negativo);
- Se após a substituição do valor que “x” está tendendo, na função, der algo do tipo:
0/K => Podemos concluir que o limite da função será igual a zero;
- Se após a substituição do valor que “x” está tendendo, na função, der algo do tipo:
0/0 => Não podemos concluir nada sobre o limite da função. Neste caso, o limite terá que ser simplificado, racionalizado, etc..;
- Se após a substituição do valor que “x” está tendendo, na função, der algo do tipo:
K/K => É só substituir, na função, o valor que “x” está tendendo, que acharemos o valor do limite desta função;
Após a utilização destas práticas, há outros macetes para descobrir o valor dos limites. Um deles é dividir a função pelo número de maior expoente, quando “x” tender ao infinito, seja ele positivo ou negativo, assim, quando algum número ficar deste jeito: k/x ele zerará.
Para achar as assíntotas, basta:
- Verticais => achar as raízes do denominador, e fazer limite da função dada, com “x” tendendo à essas raízes. Caso esse limite leve a função dada ao infinito, essa raíz é uma assintota vertical da função dada. É importante lembrar de fazer os limites laterais desta raíz para a construção de gráficos, e que a função tangente possui infinitas assintotas verticais.
- Horizontais => fazer limite da função tendendo à mais infinito e à menos infinito. O valor desses limites serão a reta da assintota horizontal.
Em limites, é comum: multiplicar pelo conjugado do numerador ou denominador, multiplicar e dividir por módulo de x (que é igual a raíz quadrada de x ao quadrado)...
Sempre que o limite for trigonométrico, lembrar do teorema do sanduíche, e principalmente do limite