Multilayer Perceptron
As redes neurais foram desenvolvidas, originalmente, na década de 40, pelo neurofisiologista Warren McCulloch, do MIT, e pelo matemático Walter Pitts, da Universidade de Illinois, os quais, dentro do espírito cibernético, fizeram uma analogia entre células nervosas vivas e o processo eletrônico num trabalho publicado sobre "neurônios formais". O trabalho consistia num modelo de resistores variáveis e amplificadores representando conexões sinápticas de um neurônio biológico. Desde então, mais enfaticamente a partir da década 80, diversos modelos de redes neurais artificiais têm surgido com o propósito de aperfeiçoar e aplicar esta tecnologia. Algumas destas propostas tendem a aperfeiçoar mecanismos internos da rede neural para aplicação na indústria e negócios, outras procuram aproximá-las ainda mais dos modelos biológicos originais.
O neurônio artificial é uma estrutura lógico-matemática que procura simular a forma, o comportamento e as funções de um neurônio biológico. Assim sendo, os dendritos foram substituídos por entradas, cujas ligações com o corpo celular artificial são realizadas através de elementos chamados de peso (simulando as sinapses). Os estímulos captados pelas entradas são processados pela função de soma, e o limiar de disparo do neurônio biológico foi substituído pela função de transferência.
Combinando diversos neurônios artificiais podemos formar o que é chamado de rede neural artificial. As entradas, simulando uma área de captação de estímulos, podem ser conectadas em muitos neurônios, resultando, assim, em uma série de saídas, onde cada neurônio representa uma saída. Essas conexões, em comparação com o sistema biológico, representam o contato dos dendritos com outros neurônios, formando assim as sinapses. A função da conexão em si é tornar o sinal de saída de um neurônio em um sinal de entrada de outro, ou ainda, orientar o sinal de saída para o mundo externo (mundo real). As diferentes possibilidades de conexões