Matriz

1004 palavras 5 páginas
Álgebra Linear Matrizes
Prof. Carlos Alexandre Mello cabm@cin.ufpe.br Prof. Carlos Alexandre Barros de Mello cabm@cin.ufpe.br

1

Matrizes
• Uma matriz é uma estrutura bi-dimensional onde todos os elementos são do mesmo tipo • Os elementos são dispostos em linhas e colunas e cada célula dela é completamente identificada pela sua posição e seu valor • Exemplos:
2 1 3 5 4 7 1 2 3

Prof. Carlos Alexandre Barros de Mello cabm@cin.ufpe.br

2

Matrizes
• Uma matriz de m linhas e n colunas é representada por: a11 a21 . . . am1 a12 a22 . . . am2 …. …. a1n a2n . . . amn

Amxn =

= [aij]mxn

….

Prof. Carlos Alexandre Barros de Mello cabm@cin.ufpe.br

3

Matrizes
• Definição: Duas matrizes Amxn=[aij]mxn e Brxs=[bij]rxs são iguais A = B, se elas têm o mesmo número de linhas (m = r) e colunas (n = s), e todos os seus elementos correspondentes são iguais (aij = bij)

Prof. Carlos Alexandre Barros de Mello cabm@cin.ufpe.br

4

Matrizes
Tipos Especiais de Matrizes • Matriz Quadrada: É aquela cujo número de linhas é igual ao número de colunas • Matriz Nula: É aquela em que aij = 0, para todo i e todo j • Matriz Coluna: É aquela que possui apenas uma única coluna • Matriz Linha: É aquela que possui apenas uma única linha
Prof. Carlos Alexandre Barros de Mello cabm@cin.ufpe.br 5

Matrizes
Tipos Especiais de Matrizes • Matriz Diagonal: É uma matriz quadrada (m=n) onde aij = 0, para todo i≠j 2 0 0 0 0 4 0 0 0 0 1 0 0 0 0 3

Prof. Carlos Alexandre Barros de Mello cabm@cin.ufpe.br

6

Matrizes
Tipos Especiais de Matrizes • Matriz Identidade Quadrada: É aquela em que aii = 1 e aij = 0, para todo i≠j 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

I =

Prof. Carlos Alexandre Barros de Mello cabm@cin.ufpe.br

7

Matrizes
Tipos Especiais de Matrizes • Matriz Triangular Superior: É uma matriz quadrada onde todos os elementos abaixo da diagonal são nulos (aij = 0 para todo i > j) 2 0 0 0 3 4 0 0 1 0 1 0 2 3 0 3

Prof. Carlos Alexandre

Relacionados

  • Matriz
    818 palavras | 4 páginas
  • matriz
    1193 palavras | 5 páginas
  • Matriz
    1903 palavras | 8 páginas
  • Matriz
    1986 palavras | 8 páginas
  • Matriz
    520 palavras | 3 páginas
  • O Que Matriz
    1168 palavras | 5 páginas
  • matriz
    1016 palavras | 5 páginas
  • Matriz
    4674 palavras | 19 páginas
  • Matriz
    1008 palavras | 5 páginas
  • matriz
    1336 palavras | 6 páginas