Matematica

1770 palavras 8 páginas
Matemática

Colégio PH7
1ª Etapa A
Prof.: Valter Resplandes
Aluna: Dilva Carneiro da Silva

Matemática
Equação do 2º grau

Colégio PH7
1ª Etapa A
Prof.: Valter Resplandes
Aluna: Dilva Carneiro da Silva

SUMÁRIO

Introdução
Denomina-se equação do 2° grau, qualquer sentença matemática que possa ser reduzida à formaax2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a ≠ 0. a, b e c são coeficientes da equação. Observe que o maior índice da incógnita na equação é igual a dois e é isto que a define como sendo uma equação do segundo grau.
Equação do 2° grau completa e equação do 2° grau incompleta
Da definição acima temos obrigatoriamente que a ≠ 0, no entanto podemos ter b = 0 e/ou c = 0.
Caso b ≠ 0 e c ≠ 0, temos uma equação do 2° grau completa. A sentença matemática -2x2 + 3x - 5 = 0 é um exemplo de equação do 2° grau completa, pois temos b = 3 e c = -5, que são diferentes de zero.
-x2 + 7 = 0 é um exemplo de equação do 2° grau incompleta, pois b = 0.
Neste outro exemplo, 3x2 - 4x = 0 a equação é incompleta, pois c = 0.
Veja este último exemplo de equação do 2° grau incompleta, 8x2 = 0, onde tanto b, quanto c são iguais a zero.

Desenvolvimento
Exemplos:
1) O triplo do quadrado do número de filhos de Pedro é igual a 63 menos 12 vezes o número de filhos. Quantos filhos Pedro tem?
Sendo x o número de filhos de Pedro, temos que 3x2 equivale ao triplo do quadrado do número de filhos e que63 - 12x equivale a 63 menos 12 vezes o número de filhos. Montando a sentença matemática temos:
3x2 = 63 - 12x
Que pode ser expressa como:
3x2 + 12x - 63 = 0
Temos agora uma sentença matemática reduzida à forma ax2 + bx + c = 0, que é denominada equação do 2° grau. Vamos então encontrar as raízes da equação, que será a solução do nosso problema:
Primeiramente calculemos o valor de Δ:

Como Δ é maior que zero, de antemão

Relacionados

  • Matematica
    9242 palavras | 37 páginas
  • Matemática
    1251 palavras | 6 páginas
  • matematica
    1398 palavras | 6 páginas
  • Matematica
    878 palavras | 4 páginas
  • matematica
    3488 palavras | 14 páginas
  • matematica
    2091 palavras | 9 páginas
  • matematica
    417 palavras | 2 páginas
  • matemática
    9547 palavras | 39 páginas
  • Matematica
    2063 palavras | 9 páginas
  • matematica
    921 palavras | 4 páginas