função de x

1911 palavras 8 páginas
Capítulo 4
Funções de duas variáveis
4.1

Funções de varias variáveis - Definição e exemplos

Definição 1: Chamamos de função real com n variáveis a uma função do tipo f : D → R com D ⊂ Rn = R × · · · × R.
Ou seja, uma função cujo domínio D (ou D(f )) é um subconjunto de Rn e seu contradomínio é R.
Exemplo:
1. f : R2 → R, (x, y) → 2x + 3y
D = R, é uma função real de duas variáveis (é também uma função linear).
2. f : R3 → R, (x, y, z) → x2 + 3y + z
D = R3 , é uma função real de três variáveis (é também uma função polinomial)
2x
+ y2 + z2
D = R3 −{(0, 0, 0)} ⊂ R3 é uma função real de três variáveis (é também uma função

3. f : R3 − {(0, 0, 0)} → R, (x, y, z) →

x2

racional, isto é, quociente de duas funções polinomiais).

Usamos, também, a notação ( mais resumida) para representar funções reais de n variáveis; y = f (x1 , · · · , xn )
Neste caso D(f ) é o conjunto D(f ) = {(x1 , · · · , xn ) ∈ Rn ; f (x1 , · · · , xn ) ∈ R}
40

4.2

Domínio - Representação Gráfica

Exemplo : Determine e represente geometricamente os domínios das funções
Representação gráfica y 1. f (x, y) = 3x2 + 1
D(f ) = R2 x O

Figura 1

3x2 − 1
2. f (x, y) = 2 x + y2 + 1 x2 + y 2 + 1 = 0, não tem solução, logo D(f ) = R2 .
Representação gráfica: Figura 1
3x2 + y
3. f (x, y) = 2 x + y2 x2 + y 2 = 0. Como x2 ≥ 0 e y 2 ≥ 0 então

Representação gráfica y x2 + y 2 = 0 ⇔ x2 = 0 e y 2 = 0

⇔ x = 0 e y = 0.

x

O

Logo D(f ) = R2 − {(0, 0)}.

Representação gráfica
3

=

x

y

y

x x−y D(f ) = {(x, y) ∈ R2 ; x − y = 0},

4. f (x, y) =

ou seja, todo o plano exceto a 1a bissetriz.
O

Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso

x

41

Representação gráfica y y=

x2

2x + y
5. f (x, y) = √ 2 x −y
D(f ) = {(x, y) ∈ R2 ; x2 > y}

x

O

Representação gráfica x−y y−1

=

x−y
>0
y−1 equivalente a x − y > 0 e y − 1 > 0
D(f ) = (x, y) ∈ R2 ;

x

y y=1 y

6. f (x, y) = ln

Relacionados

  • Arte x função
    754 palavras | 4 páginas
  • Gestão por Processos x Gestão por Função
    6764 palavras | 28 páginas
  • DESVIO DE FUNCÃO DO VIGIA X GIGILANTE
    3648 palavras | 15 páginas
  • Derivada da função f(x)= 2x²
    574 palavras | 3 páginas
  • A função f(x)=-2+sen(x+pi) tem amplitude:
    278 palavras | 2 páginas
  • Forma e operacionalização/ função x área funcional
    1000 palavras | 4 páginas
  • A função da escola e o desafio qualidade x quantidade
    1226 palavras | 5 páginas
  • A função da escola e o desafio da qualidade x quantidade.•
    358 palavras | 2 páginas
  • A função da escola e o desafio da qualidde x quantidade
    262 palavras | 2 páginas
  • f(x)=0 para a função f(x)=ax+b onde f(1)=5 e f(-2)=-4
    720 palavras | 3 páginas