Função de Primeiro e Segundo Grau
Funções polinomiais
Toda função na forma P(x) = anxn + an-1xn-1 + ... + a2x2+ a1x + a0 é considerada uma função polinomial, onde p(x) está em função do valor de x. A cada valor atribuído a x existe um valor em y, pois x: domínio da função e y: imagem.
O grau de um polinômio é expresso através do maior expoente natural entre os monômios que o formam.
Função do 1º Grau:
Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a diferente de 0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. O gráfico de uma função polinomial do 1º grau, y = ax + b, com a diferente de 0, é uma reta oblíqua aos eixos Ox e Oy.
função crescente função decrescente
O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox. O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.
Aplicações de uma função de primeiro grau:
Exemplo 1: Uma pessoa vai escolher um plano de saúde entre duas opções: A e B.
Condições dos planos:
Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por consulta num certo período.
Plano B: cobra um valor fixo mensal de R$ 110,00 e R$ 25,00 por consulta num certo período.
Temos que o gasto total de cada plano é dado em função do número de consultas x dentro do período pré – estabelecido.
Vamos determinar:
a) A função correspondente a cada plano.
b) Em qual situação o plano A é mais econômico; o plano B é mais econômico; os dois se equivalem.
Solução:
a) Plano A: f(x) = 20x + 140
Plano B: g(x) = 25x + 110
b) Para que o plano A seja