Exercício de derivadas
1) Dada a função do 1º grau f ( x ) = 2 x – 3, calcule:
a) f ′(2) = c) f ′( -1) =
b) f ′(5) = d) f ′(- 3) =
2) Calcule o valor numérico das derivadas:
a) y = 2 x 3 + 3 x 2 – 4 x + 1 y ′ ( 1 ) =
b) y = 5 x 4 – 2 y ′ ( - 1 ) =
c) f ( x ) = x 2 – 2 x f ′ ( 2 ) =
d) f ( x ) = f ′ ( 1 ) =
e) y = 8 x ( 3 x + 2 ) y ′ ( 0 ) =
f) f ( x ) = ( 2 x + 4 ) ( 3 x – 4 ) f ′ ( - 1 ) =
g) y = 3 x 2 – 1 y ′ ( - 1 ) =
h) y = x 3 + x 2 – x + 5 y ′ ( - 2 ) =
i) f ( x ) = ( 3 x + 5 ) 3 f ′ ( - 1 ) =
j) y = ( 2 x 2 – x + 1 ) 2 y ′ ( 3 ) =
l) f ( x ) = f ′ ( - 1 ) =
m) y = ( 5 x 4 – 8 ) 4 y ′ ( 1 ) =
n) ) y = y ′ ( 0 ) =
o) f ( x ) = 3 x 4 . ( 7 x 2 – 5 ) f ′ ( 1 ) =
p) f ( x ) = ( 7 – 10 x 2 ) ( - 8 x + 4 x 3 ) 3 f ′ ( 0 ) =
q) f ( x ) = - 8 x 4 . ( 4 x + 1 ) 5 f ′ ( -1 ) =
3) Calcule a derivada nos pontos:
a) f ( x ) = x 2 + 1 no ponto x = 5
b) f ( x ) = 3 x 2 no ponto x = 2
c) f ( x ) = 2 x 3 no ponto x = 1
d) f ( x ) = 2 x 3 – 2 no ponto x = 3
e) f ( x ) = x 3 + 4 x no ponto x = 2
f) f ( x ) = no ponto x = 1
g) f ( x ) = no ponto x = - 1
h) f ( x ) = ( 4 x 3 – 3 ) ( - 6 x 2 + 4 x ) 6 no ponto x = 1
4) Considere f ( x ) = 2 x 3 + 15 x 2 + 12 x, determine f ′ ( 1 ) =
5) Sendo f ( x ) = 2 x 3 – 15 x 2 + 36 x – 7 e g ( x ) = x 3 – 6 x 2 + 11 x – 6 , determine : f ′ ( 0 ) - 2 g ′ ( 1 ) =
6) Dada a função f ( x ) = 3 x 2 – 1, calcule f ′ ( - 4 ) =
7) Calcule a derivada de f ( x ) = ( x 2 – 3 x ) 3 e encontre f ′ ( 2 ) =
8) Calcule a derivada de f ( x ) = ( x 3 – 2 x ) 2 e encontre f ′ ( - 2 ) =
RESPOSTAS:
1) a) 2 b) 2 c) 2 d) 2
2) a) 8 b) – 20 c) 2 d) - e) 16 f) -8 g) – 6 h) 7
i) 36 j) 352 l) m) 2160
n) -30 o) 66 p) 0 q) - 20736
3) a) 10 b) 12 c) 6 d) 54
e) 16 f) g) h) - 768