estudante

1936 palavras 8 páginas
Funções

Função é uma expressão matemática que relaciona dois valores pertencentes a conjuntos diferentes, mas com relações entre si. A lei de formação que intitula uma determinada função possui três características básicas: domínio, contradomínio e imagem.

Dada a seguinte função f(x) = x + 1, e os conjuntos A(1, 2, 3, 4, 5) e B(1, 2, 3, 4, 5, 6, 7). Vamos construir o diagrama de flechas:

Nessa situação, temos que:

Domínio: representado por todos os elementos do conjunto A.
(1, 2, 3, 4, 5)

Contradomínio: representado por todos os elementos do conjunto B.
(1, 2, 3, 4, 5, 6, 7)

Imagem: representada pelos elementos do contradomínio (conjunto B) que possuem correspondência com o domínio (conjunto A).
(2, 3, 4, 5, 6)

Tipos de função

Função sobrejetora: uma função é sobrejetora se, e somente se, o seu conjunto imagem for especificadamente igual ao contradomínio, Im = B. Por exemplo, se temos uma função f : Z→Z definida por y = x +1 ela é sobrejetora, pois Im = Z.
Função injetora: uma função é injetora se os elementos distintos do domínio tiverem imagens distintas. Por exemplo, dada a função f : A→B, tal que f(x) = 3x.

Função bijetora: uma função é bijetora se ela é injetora e sobrejetora. Por exemplo, a função f : A→B, tal que f(x) = 5x + 4.

Função Afim

Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. Exemplo: f(x) = 5x - 3, onde a = 5 e b = - 3

Gráfico da função afim

O gráfico de uma função polinomial do 1º grau, y = ax + b, com a0, é uma reta oblíqua aos eixos Ox e Oy. Vamos construir o gráfico da função y = 3x - 1:
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua: a) Para x = 0, temos y = 3 · 0 - 1 = -1; portanto, um ponto é

Relacionados

  • Estudante
    4061 palavras | 17 páginas
  • Estudante
    5203 palavras | 21 páginas
  • estudante
    1826 palavras | 8 páginas
  • Estudante
    1976 palavras | 8 páginas
  • estudante
    4108 palavras | 17 páginas
  • Estudante
    4793 palavras | 20 páginas
  • estudantes
    7348 palavras | 30 páginas
  • estudante
    16461 palavras | 66 páginas
  • estudante
    1462 palavras | 6 páginas
  • Estudante
    1075 palavras | 5 páginas