esfera
A esfera é obtida através da revolução da semicircunferência sobre um eixo. Podemos considerar que a esfera é um sólido.
Alguns conceitos básicos estão relacionados à esfera, se considerarmos a superfície esférica destacamos os seguintes elementos básicos:
Pólos
Equador
Paralelo
Meridiano
Área de uma superfície esférica
Temos que a área de uma superfície esférica de raio r é igual a:
Volume da esfera
Por ser considerada um sólido geométrico, a esfera possui volume representado pela seguinte equação:
Posição relativa entre plano e esfera
Plano secante à esfera
O plano intersecciona a esfera formando duas partes, se o plano corta a esfera passando pelo centro temos duas partes de tamanhos iguais.
Plano tangente à esfera
O plano tangencia a esfera em apenas um ponto, formando um ângulo de 90º graus com o eixo de simetria.
Plano externo à esfera
O plano e a esfera não possuem pontos em comum.
A esfera possui inúmeras aplicações, como exemplo podemos citar a Óptica (Física), a seção de uma esfera forma uma lente esférica, que são objetos importantes na construção de óculos. Corpos esféricos possuem grande importância na Engenharia Mecânica, a parte interior de inúmeras peças capazes de realizar movimentos circulares sobre eixos é constituída de esferas de aço. Um bom exemplo dessas peças é o rolamento.
Superfície esférica de centro O, é o conjunto de pontos do espaço cuja distância a O é igual a R.
Esfera é o conjunto de pontos do espaço cuja distância a O é igual ou menor que o raio R.
Área da superfície esférica e volume da esfera
A área da superfície esférica de raio R é dada por:
O volume da esfera de raio R é dado por:
Secção de uma esfera
OO’ é a distância do plano α ao centro da esfera. Qualquer plano α que seciona uma esfera de raio R determina como seção plana um círculo de raio R.
Sendo OO’ = d, temos:
Quando o plano que