Equações do segundo grau
Financeira
Fundamental
Médio
Geometria
Trigonometria
Superior
Cálculos
Ensino Fundamental: Equações do segundo grau
Introd. às equações algébricas
Fórmula Bhaskara (Sridhara)
Equação do segundo grau
Equação completa
Equação incompleta
Solução eq. incompletas
Equaç. incompletas: Exemplos
Solução eq. completas
Uso da fórmula de Bhaskara
Exercícios
Eq. fracionárias
Equações bi-quadradas
Introdução às equações algébricas
Equações algébricas são equações nas quais a incógnita x está sujeita a operações algébricas como: adição, subtração, multiplicação, divisão e radiciação.
Exemplos:
1. a x + b = 0
2. a x² + bx + c = 0
3. a x4 + b x² + c = 0
Uma equação algébrica está em sua forma canônica, quando ela pode ser escrita como: ao xn + a1 xn-1 + ... + an-1 x1 + an = 0 onde n é um número inteiro positivo (número natural). O maior expoente da incógnita em uma equação algébrica é denominado o grau da equação e o coeficiente do termo de mais alto grau é denominado coeficiente do termo dominante.
Exemplo: A equação 4x²+3x+2=0 tem o grau 2 e o coeficiente do termo dominante é 4. Neste caso, dizemos que esta é uma equação do segundo grau.
A fórmula quadrática de Sridhara (Bhaskara)
Mostraremos na sequência como o matemático Sridhara, obteve a Fórmula (conhecida como sendo) de Bhaskara, que é a fórmula geral para a resolução de equações do segundo grau. Um fato curioso é que a Fórmula de Bhaskara não foi descoberta por ele mas pelo matemático hindu Sridhara, pelo menos um século antes da publicação de Bhaskara, fato reconhecido pelo próprio Bhaskara, embora o material construído pelo pioneiro não tenha chegado até nós.
O fundamento usado para obter esta fórmula foi buscar uma forma de reduzir a equação do segundo grau a uma do primeiro grau, através da extração de raízes quadradas de ambos os membros da mesma.
Seja a equação: a x² + b x + c = 0 com a não nulo e dividindo todos os coeficientes por a,