Dizima periodica
Notação de uma Dízima Periódica
Uma Dízima Periódica poderá ser representada de três formas diferentes :
Os Casos da Conversão de Frações Ordinárias em Números Decimais
1º Caso: Número Decimal Exato
Uma fração ordinária e irredutível se transformará numa decimal exata quando seu denominador contiver apenas os fatores primos 2 , 5 ou 2 e 5. O número de ordens, ou casas decimais, será dado pelo maior expoente dos fatores 2 ou 5.
Exemplo 1: A fração ordinária e irredutível 7/4 se converterá numa decimal exata já que o seu denominador 4 só contém o fator primo 2 ( 4 = 22 ). Essa decimal exata terá 2 casas decimais, já que o expoente do fator 2 é 2
Exemplo 2: A fração ordinária e irredutível 71/125 se converterá numa decimal exata já que o seu denominador 125 só contém o fator primo 5 ( 125 = 53 ). Essa decimal exata terá 3 casas decimais, já que o expoente do fator 5 é 3
Exemplo 3: A fração ordinária e irredutível 93/80 se converterá numa decimal exata já que o seu denominador 80 só contém os fatores primos 2 e 5 ( 40 = 24 x 5 ). Essa decimal exata terá 4 casas decimais, já que o expoente do fator 2 é 4
2º Caso: Dízima Periódica Simples
Uma fração ordinária e irredutível se transformará numa Dízima Periódica Simples quando seu denominador contiver apenas fatores primos diferentes dos fatores primos 2 , 5 ou 2 e 5.
Exemplo 4: A fração ordinária e irredutível 16/9 se converterá numa Dízima Periódica Simples já que o seu denominador 9 só contém o fator primo 3 ( 9 = 32 )
Exemplo 5: A fração ordinária e irredutível 43/77 se converterá numa Dízima Periódica Simples já que o seu denominador 77 só contém os fatores primos 7 e 11 ( 77 = 7 x 11)
Exemplo 6: A fração ordinária e irredutível 8/117 se converterá numa Dízima Periódica Simples já que o seu denominador 117 só contém os fatores primos 3 e 13 ( 117 = 32 x 13 )
3º Caso: Dízima Periódica Composta
Uma fração ordinária e irredutível se transformará numa Dízima