como indentificar uma dizima periiodica

288 palavras 2 páginas
Dízimas periódicas Há frações que não possuem representações decimal exata. Por exemplo: Aos numerais decimais em que há repetição periódica e infinita de um ou mais algarismos, dá-se o nome de numerais decimais periódicos ou dízimas periódicas. Numa dízima periódica, o algarismo ou algarismos que se repetem infinitamente, constituem o período dessa dízima. As dízimas classificam-se em dízimas periódicas simples e dízimas periódicas compostas. Exemplos: (período: 5) (período: 3) (período: 12)
São dízimas periódicas simples, uma vez que o período apresenta-se logo após a vírgula. Período: 2
Parte não periódica: 0 Período: 4
Período não periódica: 15

Período: 23
Parte não periódica: 1
São dízimas periódicas compostas, uma vez que entre o período e a vírgula existe uma parte não periódica.
Observações:
Consideramos parte não periódica de uma dízima o termo situado entre vírgulas e o período. Excluímos portanto da parte não periódica o inteiro.
Podemos representar uma dízima periódica das seguintes maneiras:

Geratriz de uma dízima periódica É possível determinar a fração (número racional) que deu origem a uma dízima periódica. Denominamos esta fração de geratriz da dízima periódica. Procedimentos para determinação da geratriz de uma dízima: Dízima simples A geratriz de uma dízima simples é uma fração que tem para numerador o período e para denominador tantos noves quantos forem os algarismos do período.
Exemplos:

Dízima Composta: A geratriz de uma dízima composta é uma fração da forma , onde n é a parte não periódica seguida do período, menos a parte não periódica. d tantos noves quantos forem os algarismos do período seguidos de tantos zeros quantos forem os algarismos da parte não periódica.
Exemplos:

Relacionados