Direitos humanos
O Cálculo está presente na maioria dos cursos de ciências exatas, e é na disciplina de Cálculo I que se tem o primeiro contato com os limites, as derivadas e as integrais (conceitos de grande importância para a matemática). Por conta da diversidade de conteúdo que precisa ser analisado, essa matéria é uma das que causam mais medo nos calouros.
A noção de derivada é quase uma extensão do conceito de coeficiente angular da geometria analítica, mas se aplica a qualquer função, e não apenas a retas. Se você lembra o que aprendeu sobre isso no Ensino Médio já é um bom começo. Aos que não se recordam muito bem, darei uma breve explicação:
O coeficiente angular de uma reta diz respeito à inclinação desta reta. Quanto mais distante de zero é o coeficiente angular, maior é a inclinação da reta. Calcula-se o coeficiente angular de uma reta pela razão de uma variação de y por uma variação de x, correspondente à reta. Matematicamente, a = (y – y’) / (x-x’), onde a é o coeficiente angular, y e y’ são valores arbitrários para y, e x e x’ são os valores de x correspondentes àqueles valores de y. O coeficiente angular equivale à tangente do ângulo que a reta forma com o eixo x.
Para entender o que é a derivada, é preciso que se conheça o conceito de limite.
O limite é uma aproximação infinitesimal de x a algum valor, mas sem que x seja exatamente aquele valor.
Vamos analisar a função y = 1/x. Essa função não está definida para x = 0, pois não existe divisão com quociente 0 (zero) na matemática. Porém, você pode calcular o limite da função 1/x, com x tendendo a zero. Quanto isso dá? (No caso, vamos calcular o limite com x tendendo a zero pela direita, ou seja, pelos valores mais positivos).
A derivada é a inclinação do gráfico de uma dada função, para um dado valor de x. Também pode ser interpretada como o quanto y varia em função de x. No caso da reta, a inclinação não varia em função de x, pois é constante