coordenadas do vertice da parabola
Vértices
Toda função quadrática ou do 2º grau é do tipo f(x) = ax2 + bx + c, com a ≠ 0. O gráfico de uma função do segundo grau é uma parábola que, dependendo do valor do coeficiente a, terá a concavidade voltada para cima ou para baixo. Se o coeficiente a for negativo, a concavidade da parábola será voltada para baixo. Se ocorrer o contrário, ou seja, a for positivo, a parábola terá a concavidade voltada para cima. A parábola apresenta alguns pontos notáveis: as raízes, que são os pontos onde o gráfico intercepta o eixo das abscissas, e o vértice, que pode ser o ponto de máximo absoluto ou de mínimo absoluto da função. Faremos o estudo do vértice da parábola, a fim de determinar as suas coordenadas e compreender sua importância no estudo da função do 2º grau.
Como foi dito anteriormente, o vértice da parábola pode ser o ponto de máximo absoluto ou de mínimo absoluto da função do 2º grau. Se a concavidade da parábola for voltada para cima, o vértice é o ponto de mínimo da função, ou seja, é o menor valor que a função pode assumir. Se a concavidade da parábola estiver voltada para baixo, o vértice é o ponto de máximo da função, ou seja, o maior valor que a função pode assumir. O uso desses conceitos é bastante útil na teoria de lançamentos oblíquos.
Dada uma função do 2º grau f(x) = ax2 + bx + c, as coordenadas do vértice V da parábola descrita por essa função são:
Onde
∆ = b2 - 4ac
Vejamos alguns exemplos de aplicação.
Exemplo 1. Verifique se as seguintes funções apresentam ponto de máximo ou mínimo absoluto.
a) f(x) = – 2x2 + 3x + 5
Solução: No caso da função do 2º grau, para determinarmos se há ponto de máximo e mínimo absoluto basta verificar se a concavidade da parábola descrita pela função apresenta concavidade voltada para baixo ou para cima. Nesse caso, temos que:
a = – 2 < 0 → concavidade da parábola está voltada para baixo.
Como a concavidade da parábola está voltada