calculo
Na posição de equilíbrio a elongação da mola é igual a amplitude do movimento:
Fm=k.ym
Na análise das forças, o módulo da força da mola acaba sendo igual a força peso:
Fm=P
k.ym=m.g
k.0,05=4.10
k=800 (N/m)
A energia mecânica do sistema é dada por EM=0,5.k.(ym)^2
EM=0,5.800.0,05^2
EM=1 J
Como no estado de equilíbrio tem apenas energia cinética, a energia cinética acaba sendo igual a energia mecânica do sistema.
EM=ECequilíbrio=1 J
Exercício 2 – Resposta B
A energia mecânica é a soma da energia cinética com a energia potencial em qualquer posição do movimento, então:
EM=EC+EP
Logo:
1=0,5.m.v^2+0,5.k.x^2
Substituindo:
2=4.v^2+800.0,02^2
4.v^2=1,68 v=0,648 m/s
Exercício 3 – Resposta D
Calcula o valor da pulsação por w=2.pi.f w=2.3,14.2,5 w=15,7
Calcula a amplitude através da fórmula dada: ym=(y(0)^2+(v(0)/w)^2)^1/2 ym=(0,011^2+(0,011/15,7)^2)^1/2 ym=0,0146 m = 1,46 cm
Exercício 4 – Resposta A
A amplitude da velocidade de um MHS é calculada por vm=ym.w vm=1,46.15,7 vm=22,9 (cm/s)
Exercício 5 – Resposta D
Primeiro analisamos as forças envolvidas no movimento:
-Fm-Fv=Fr
Fm = Força da mola; Fv = Força viscosa; e Fr = Força resultante.
-y.k-v.b=m.a
Substitui se o que der e resolve se a equação diferencial:
-y.32000 -v.640 -80.a=0 (divide por 80)
-y.400-v.8 -a=0
Resolvendo a equação diferencial, chega-se ao seguinte: y=e^(-4t).[A.cos(19,6t) + B.sen(19,6t)]
Derivando a equação acima obtemos a equação da velocidade:
V=-4. e^(-4t) .[A.cos(19,6t) + B.sen(19,6t)] + e^(-4t) .[-19,6.A.sen(19,6t) + 19,6.B.cos(19,6t)]
Substituindo as condições iniciais, descobre-se o valor de A e de B, chegando a equação do movimento completa: y= e^(-4t) .[0,492.cos(19,6t) + 0,609.sen(19,6t)]
Agora termina-se de resolver o exercício: y(0,4) = e^(-4.0,4).[0,492.cos(19,6.0,4) + 0,609.sen(19,6.0,4)] y(0,4) = 0,202.[0,0069+0,6089] y(0,4) = 0,124 m
Exercício 6 – Resposta E