Aula PO M Todo Gr Fico
MÉTODO GRÁFICO
José Paulo da Silva Neto
Introdução
•
Seja a seguinte equação:
Esta equação corresponde a uma reta. Sua representação é apresentada na figura a seguir:
Como se pode observar, esta equação divide o espaço R2 em dois semiplanos.
Introdução
•
Agora seja a seguinte equação:
Esta equação corresponde à um plano. Sua representação é apresentada na figura a seguir:
Este plano divide o espaço
R3 em duas regiões, chamadas semi-espaços.
Introdução
•
Agora seja a seguinte equação:
Esta equação corresponde à um plano. Sua representação é apresentada na figura a seguir:
Este plano divide o espaço
R3 em duas regiões, chamadas semi-espaços.
Portanto, define a equação de um hiper-plano, o qual divide o espaço Rn em dois semi-espaços.
Solução Gráfica de PPL’s
•
Seja o seguinte PPL:
Uma pequena siderúrgica deseja maximizar sua receita com a venda de dois tipos de finas fitas de aço que se diferenciam em qualidade no acabamento de corte.
As fitas são produzidas a partir do corte de bobinas de grande largura. Existem duas máquinas em operação. Uma das máquinas é mais antiga e permite o corte diário de 4000m de fita. A outra, mais nova, corta até 6000m. A venda das chapas no mercado varia com a qualidade de cada uma. Fitas produzidas na máquina antiga permitem um lucro de R$ 3 por mil metros de produção, enquanto fitas cortadas na máquina moderna produzem um lucro de R$ 5 por mil metros de produção. Cada mil metros de fita cortada na máquina antiga consome 3 homens x hora de mão-de-obra. Na máquina moderna são gastos apenas 2 homens x hora. Diariamente estão disponíveis 18 homens x hora para a operação de ambas as máquinas. Determinar a produção que otimiza o lucro da metalúrgica.
Solução Gráfica de PPL’s
•
Fase 1: Modelagem
a)
Objetivo: Maximizar os lucros
b)
Variáveis de Decisão
c)
Função Objetivo
d)
Restrições
(R1) Capacidade de corte da máquina antiga:
(R2) Capacidade de corte da máquina nova:
(R3) Mão de obra