ATPS DE CALCULO NUMERICO ETAPA 1 E 2
1. Princípios Gerais de Calculo Numérico 03
2.1. 05
2.2. 07
2.3. 09
3. Referências Bibliográficas 10
São Bernardo do Campo – Set. 2013
RELATORIO I
PRINCÍPIOS GERAIS DE CALCULO NUMÉRICO
Podemos dividir a Matemática em duas partes, o cálculo numérico e o cálculo algébrico. O cálculo numérico se baseia nas analises e processos que resolvem problemas matemáticos por meio de operações aritméticas envolvem as operações da adição, subtração, multiplicação, divisão, potenciação e radiciação, envolvendo os números reais. Os cálculos envolvendo frações, também são abordados e explorados de forma complexa.
Esses métodos se aplicam principalmente a problemas que não apresentam uma solução exata, portanto, precisam ser resolvidos numericamente. Um método numérico é um método não analítico, que tem como objetivo determinar um ou mais valores numéricos, que são soluções de certo problema. Ao contrário das metodologias analíticas, que conduzem a soluções exatas para os problemas, os métodos numéricos produzem em geral apenas soluções aproximadas. As operações de adição e multiplicação não são comutativas, associativas e nem distributivas, pois numa série de operações aritméticas, o arredondamento é feito após cada operação.
Os erros de arredondamento estão associados ao fato dos computadores utilizarem um número limitado de dígitos para representarem números. Duas medidas podem ser utilizadas para quantificar a diferença entre o valor real e o valor arredondado, seriam elas o erro absoluto e o erro relativo; E o erro absoluto é a diferença entre o valor exato de um número e o seu valor aproximado, o Erro relativo é a razão entre o erro absoluto e o valor exato do X ou na prática.
Alguns conceitos e princípios gerais do Cálculo Numérico são a solução de equações polinomiais e transcendentais, sistemas de equações, interpolação e aproximação, integração numérica e aproximação à solução de equações