Análise combinatória
O assunto ganhou notoriedade após a publicação de "Análise Combinatória" por Percy Alexander MacMahon em 1915. Um dos destacados combinatorialistas foi Gian-Carlo Rota, que ajudou a formalizar o assunto a partir da década de 1960. E, o engenhoso Paul Erdős trabalhou principalmente em problemas extremais. O estudo de como contar os objetos é algumas vezes considerado separadamente como um campo da enumeração.
Um exemplo de problema combinatório é o seguinte: Quantas ordenações é possível fazer com um baralho de 52 cartas? O número é igual a 52! (ou seja, "cinquenta e dois fatorial"), que é o produto de todos os números naturais de 1 até 52. Pode parecer surpreendente o quão enorme é esse número, cerca de 8,065817517094 × 1067. Comparando este número com alguns outros números grandes, ele é maior que o quadrado do Número de Avogadro, 6,022 × 1023, quantidade equivalente a um mol".
A análise combinatória é um dos tópicos que a matemática é dividida, responsável pelo estudo de critérios para a representação da quantidade de possibilidades de acontecer um agrupamento sem que seja preciso desenvolvê-los.
Veja um exemplo de um problema de análise combinatória e como montamos os seus agrupamentos.
Dado o conjunto B dos algarismos B = { 1,2,3,4}. Qual a quantidade de números naturais de 3 algarismos que podemos formar utilizando os elementos do grupo B?
Esse é um tipo de problema de análise combinatória, pois teremos que formar agrupamentos, nesse caso formar números de 3 algarismos, ou seja, formar agrupamentos com os elementos do conjunto B tomados de 3 em 3.
Veja como