20744
Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos de cálculo e análise de circuitos elétricos que operem com sinais senoidais de tensão e de corrente de mesma freqüência. Este método faz uso de um vetor radial girante denominado Fasor.
INTRODUÇÃO
Já sabemos que podemos representar sinais de tensão e de corrente alternadas senoidais através das seguintes expressões matemáticas no chamado domínio do tempo ou domínio temporal, pois são função do tempo:
• Tensão instantânea: v(t) = Vp . sen (w.t ± θV)
• Corrente instantânea: i(t) = Ip . sen (w.t ± θI)
Estas expressões matemáticas para tensões e correntes, na forma trigonométrica do domínio do tempo, não permitem métodos práticos para a análise de circuitos elétricos, pois não são fáceis de serem algebricamente operadas.
Exemplo Sabemos que potência elétrica é o produto da tensão pela corrente.
Obtenha a equação da potência elétrica multiplicando a tensão instantânea v(t)=10sen(100t) pela corrente instantânea i(t)=2sen(100t-60o):
Resolvendo, temos:
1
potência num circuito não é uma operação tão simples e evidente. Exemplo 5.1.2:
Sabemos que numa malha de um circuito elétrico devemos somar as tensões. Some os dois sinais de tensão na forma trigonométrica e obtenha as formas de onda, sendo v1(t)=10sen(100t)) e v2(t)=15sen(100t+60o). Para somarmos algebricamente tensões senoidais e obtermos a forma de onda resultante uma solução pouco prática e trabalhosa seria fazer esta operação de soma ponto a ponto das curvas senoidais, ao longo do eixo das abscissas, como mostra a figura 5.1.1. Outra solução seria operarmos os sinais buscando alguma identidade trigonométrica. De ambas as formas, concluímos que esta tarefa não é simples, nem rápida e nem evidente.
2
sinais senoidais de tensões e correntes para que possamos fazer uma análise rápida e correta de circuitos