A origem dos Fractais
A origem dos Fractais
Fractais (do latim fractus, fração, quebrado) são figuras da geometria não-Euclidiana.
A geometria fractal é o ramo da matemática que estuda as propriedades e comportamento dos fractais. Descreve muitas situações que não podem ser explicadas facilmente pela geometria clássica, e foram aplicadas em ciência, tecnologia e arte gerada por computador. As raízes conceituais dos fractais remontam a tentativas de medir o tamanho de objetos para os quais as definições tradicionais baseadas na geometria euclidiana falham.
Um fractal é um objeto geométrico que pode ser dividido em partes, cada uma das quais semelhante ao objeto original. Diz-se que os fractais têm infinitos detalhes, são geralmente autossimilares e independem de escala. Em muitos casos um fractal pode ser gerado por um padrão repetido, tipicamente um processo recorrente ou iterativo.
O termo foi criado em 1975 por Benoît Mandelbrot, matemático francês nascido na Polônia, que descobriu a geometria fractal na década de 70 do século XX, a partir do adjetivo latino Fractus, do verbo frangere, que significa quebrar.
Vários tipos de fractais foram originalmente estudados como objetos matemáticos.
Outra vista do conjunto de Mandelbrot.
A geometria Fractal Estuda as propriedades e comportamentos de figuras mais complexas que a geometria euclidiana (ou dimensão topológica) abrange, descreve situações que não podem ser descritas pela geometria euclidiana, por esta falhar nesses casos. A geometria euclidiana falha na descrição de formas encontradas na natureza. A geometria fractal, em destaque a dimensão fractal, tem utilização em varias áreas cientificas, como no estudo dos sistemas caóticos, reconhecimento de padrões em imagens, tecnologia, ciências, artes e música, etc. O fractal é uma estrutura geométrica ou física, e geralmente são muito similares em diferentes níveis de escala, porém nos fractais naturais essa característica é limitada em função