Trabalho(fisica)
O trabalho de uma força F aplicada ao longo de um caminho C pode ser calculado de forma geral através da seguinte integral de linha:
Wc=
onde:
F é o vector força r é o vector deslocamento.
O trabalho é um número real, que pode ser positivo ou negativo. Quando a força atua no sentido do deslocamento, o trabalho é positivo, isto é, existe energia sendo acrescentada ao corpo ou sistema. O contrário também é verdadeiro, uma força no sentido oposto ao deslocamento retira energia do corpo ou sistema. Qual tipo de energia, se energia cinética ou energia potencial, depende do sistema em consideração.
Como mostra a equação acima, a existência de uma força não é sinônimo de realização de trabalho. Para que tal aconteça, é necessário que haja deslocamento do ponto de aplicação da força e que haja uma componente não nula da força na direcção do deslocamento. É por esta razão que aparece um produto interno entre F e r. Por exemplo, um corpo em movimento circular uniforme (velocidade angular constante) está sujeito a uma força centrípeta. No entanto, esta força não realiza trabalho, visto que é perpendicular à trajectória.
Os princípios do conceito de trabalho remontam às equações de Galileu do movimento retilínio uniformemente variado (MRUV). Temos que o deslocamento \Delta s (positivo para uma direção da reta e negativo para a outra) equivale a
\Delta s = \frac {v^2 - v_0^2}{2a}
O que nos dá uma relação entre o deslocamento e a mudança de velocidade (v é a velocidade correspondente ao final do deslocamento e v_0 é a velocidade correspondente ao seu início).
Essa equação é o primeiro passo para um tratamento da mecânica que seja independente do tempo envolvido. Mas ainda há nela um fator que remete ao tempo: a aceleração. De forma qualitativa, essa equação nos diz que,