Trabalho de redes neurais
DEPARTAMENTO DE INFORMÁTICA
Trabalho sobre Redes Neurais
NOME DO ALUNO
NOME DO PROFESSOR
Inteligência Artificial (Nome da Matéria)
Joinville
2010
Perceptron com uma camada
Perceptrons podem ser treinados por um algoritmo de aprendizagem simples, chamado geralmente de regra-delta. Esse algoritmo calcula os erros entre a saída dos dados calculados e a saída desejada e utiliza isso para ajustar os pesos, assim executando um formulário da descida do gradiente.
Os perceptrons de uma camada são capazes de aprender somente sobre problemas linearmente separáveis (que podem ser separados por uma reta em um hiperplano). Em 1969, na famosa monografia Perceptrons por Marvin Minsky e por Seymour Papert, mostrou-se que era impossível para uma única rede do perceptron da camada aprender uma função de XOR. Conjecturou-se (incorretamente) que um resultado similar penderia para uma rede multicamadas do perceptron. Embora uma única unidade do ponto inicial fosse completamente limitada em seu poder computacional, mostrou-se que as redes de unidades paralelas do ponto inicial podem aproximar toda a função contínua de um intervalo compacto dos números reais no intervalo [ - 1, 1 ].
Perceptron multicamadas
Esta classe de rede consiste de múltiplas camadas de unidades computacionais, geralmente interconectadas em uma forma de alimentação avante. Isso quer dizer que cada neurônio em uma camada tem conexões diretas a neurônios da próxima camada. Em muitas aplicações, as unidades dessas redes utilizam uma função sigmóide (em forma de S) como a função de ativação.
O teorema de aproximação universal dita que toda função contínua que mapeia intervalos de números reais de entrada a algum intervalo de números reais de saída pode ser arbitrariamente aproximada com precisão por um perceptron multicamadas com somente uma camada oculta. Esse resultado só é válido para classes restritas de funções de ativação, por exemplo, funções sigmóides.