Teoria do desenho projetivo
Definição de Projeção Ortogonal
Nos desenhos projetivos, a representação de qualquer objeto ou figura será feita por sua projeção sobre um plano. A Figura 2.1 mostra o desenho resultante da projeção de uma forma retangular sobre um plano de projeção. Os raios projetantes tangenciam o retângulo e atingem o plano de projeção formando a projeção resultante. Como os raios projetantes, em relação ao plano de projeção, são paralelos e perpendiculares, a projeção resultante representa a forma e a verdadeira grandeza do retângulo projetado. Este tipo de projeção é denominado Projeção Ortogonal (do grego ortho = reto + gonal = ângulo), pois os raios projetantes são perpendiculares ao plano de projeção.
Figura 2.1
Das projeções ortogonais surgem as seguintes conclusões:
Figura 2.2
Figura 2.3
Figura 2.4
Toda superfície paralela a um plano de projeção se projeta neste plano exatamente na sua forma e em sua verdadeira grandeza, conforme mostra a Figura 2.2. A Figura 2.3 mostra que quando a superfície é perpendicular ao plano de projeção, a projeção resultante é uma linha. As arestas resultantes das interseções de superfícies são representadas por linhas, conforme mostra a Figura 2.4
Antonio Clélio Ribeiro, Mauro Pedro Peres, Nacir Izidoro
12
Como Utilizar as Projeções Ortogonais
Como os sólidos são constituídos de várias superfícies, as projeções ortogonais são utilizadas para representar as formas tridimensionais através de figuras planas. A Figura 2.5 mostra a aplicação das projeções ortogonais na representação das superfícies que compõem, respectivamente, um cilindro, um paralelepípedo e um prisma de base triangular. Pode-se observar que as projeções resultantes são constituídas de figuras iguais.
PROJEÇÃO EM UM SÓ PLANO
Figura 2.5
PLANO DE PROJEÇÃO
Olhando para a Figura 2.6, na qual aparecem somente as projeções resultantes da Figura 2.5, é impossível identificar as formas espaciais